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Basin characteristics Instrumentation and data

SO =ES WA EE LN ES G EVAYENE  Mahurangi River Basin Measured hydrological Measuring period Temporal Number of
OHEL IR ] 1997 — 2001 (MARVEX programme) parameters resolution stations
CEN XTI NEICERACETLEGEO [ 29 nested stream gauges. Approx 36.4°S,174.7°E Rainfall — Tipping bucket gauges 1997 — 2001 2 mins 13
ICEHIEICERE 47 km?, Rainfall — C band radar 1997 — 2001 15 mins 1 km grid
Elevation range: 0-250mas.l Rainfall — X band radar Individual events 5 secs / 2 mins 150 m grid
_ L CEIUR S Hills and lowland
(@alpine, mountainous, lowland) Streamflow 1997 — 2001 2 mins 29
Climatic parameters: Annual rainfall 1628mm, Annual pan evaporation
R e e R RG] 1319mm, Annual streamflow 842mm, Mean temp. 14 degC Soil Moisture (pseudo-TDR) 1997 — 2001 30 mins 18
ENLNHE 50% pasture, 25% plantation forest, 25% native forest Soil Moisture (TDR) 6 * campaigns N/A 10-40m gric

It Clay loams, < 1m deep

el A Alternating layers of sandstone and siltstone App| IEd mode| S

HCICCEMMOE  Runoff is dominated by baseflow from soil and regolith

T f aquifers, hydrauli ductivit : . : . .

(Type of aquifers, hydraulic conductivity) maIRR Mahurangi catchment has been used as a test site to explore model building techniques and model
complexity (e.g. Chirico et al., 2003; Atkinson et al., 2003; McMillan et al., this workshop), rather than as a
site for application of standard models.

Map of the research basin
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N . 1. Streamflow spatial variation: Rainfall is the dominant source of spatial pattern in streamflow at space
p— D0 scales of 1 km2 and greater, for all timescales
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o 2. Streamflow generation: The runoff process is associated with a clear threshold in soil moisture, with
L vt 7 = S“Warkwort

S i Satellite sub-catchment significant runoff being generated only for moisture contents above about 42%. It is also thought that
AN, e o Intensive soil moisture at these high average moisture contents, the spatial distribution of soil water is critical in the control of
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o Eiasalin lsnsl TG e b acodlifion: Typa ) 3. Soil Moisture: at space scales from 10 m to 1 km?, topography is a relatively weak control of soil
I“‘“ S moisture. Small-scale variability (< 100m) of soil moisture is associated with soil structure and

. " - % L . preferential flow pathways.
| | Native forest ﬁ? :.Elllr rl?>___,—/> 0 1 2 3 4 5km _ _ ]
4. Flow pathways: “The soils have residence times of at least several months to a few years. The streams
are reactive, but this appears to be driven by a combination of direct channel interception and local
Location of catchment instrumentation. runoff from the near-stream margin. One quarter to one third of total runoff occurs as quickflow. The
Circles = flow gauges, triangles = rain gauges largest portion of streamflow originates as baseflow from soil and regolith reservoirs that may be

several metres to perhaps several 10’s of metres deep” (Bowden et al., 2000).
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5. Model Complexity: During winter periods the soils are wet and accurate predictions of stormflow can
be achieved using lumped models. Conversely, during summer periods the soils are dry, and complex
| and fully distributed models are required for accurate predictions of stormflow (Atkinson et al., 2003).
o e e The storage-discharge relationship varies through the year depending on recharge history, and hence
e | L ] models require multiple storage reservoirs (McMillan et al., this workshop).
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The MARVEX campaign focused on spatial variability of hydrological variables River Variability Experiment: MARVEX. In: Lakshmi, V.; Albertson, J.D.; Schaake, J. (eds). Observations
and Modelling of Land Surface Hydrological Processes, pp. 201-213. Water Resources Monographs.
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