

Kolyma Water Balance Station (KWBS)

Kontaktovy basin, Russia

Kulu	River Basin / River Basin
Since	Operation (from to)
61°54	Gauge coordinates:
21.2 k	Catchment area:
800 –	Elevation range:
Mour	Basin type:
105 m	Climatic parameters:
40J II	l and user

Kulu River / Right Kolyma River Since 1948, still in operation S1°54' N; 147°25' E/ 1070 m a.m.s.l. 21.2 km²

800 – 1700 m

Mountainous

405 mm; -13.1°C (1948-1992)

Basin characteristics

Land use:	31% Barren Alpine tundra (Talus), 27% cedar and alder woods, 14% larch open woods, 11% open terrain and sloping woods
Soils:	Stony-rock debris, clayey podzol
Geology:	Shale, granite, diorite
Hydrogeology:	Fractured rock, ground water outflow from deep aquifer in not frozen channel area ("talik")
Water discharges	Q _{min} = 0 I/s, Q _{max} = 7610 I/s, Q _{average} = 195 I/s (1974 – 1984)

Instrumentation and data

Measured hydrological parameters	Measuring period	Temporal resolution	Number of stations
Stream flow	1948–cont.	Minute Daily	7
Meteorological observations	1948–cont.	3h	1
Precipitation	1948–cont.	Minute Pentad, decade in winter, daily in summer Decade Month	10 5 10 10
Snow surveys	1948–cont.	Monthly (October – March), decadely (April)	5
Evapotranspiration	1958–cont.	Pentade	4
Snow evaporation	1958–cont.	September – October, March – April (12-hourly)	1
Pan evaporation	1970–cont.	Decade	1
Energy balance	1958–cont.	Decade	1
Soil freezing/thawing	1958–cont.	Once in 5 days	5
Soil temperature at depths 0.1 – 3.2 m	1974–1981	Daily	1
Flow water chemistry	1958–cont.	Event based	2

Map of the research basin

Typical hydrographs (Kontaktovy creek, 21.2 km²)

Applied model

1. The model "Hydrograph" (in process)

Main scientific results

- 1. Regional equation for the rain peak flood discharges computation. This equation takes into account effective rain depth and intensity, density of working drainage network.
- 2. Transient moisture that forms during the autumn period as subsurface storage of ice (in rock glaciers and talus slopes) provides additional runoff recharge reaching 120-130 mm from areas occupied by these landscape types.
- 3. Evaporation (E) from surfaces covered by reindeer moss and talus depends on water availability 5 mm, number of rain events (N) and moss holding capacity. It may be computed using relationship E=5∑N. Evapotranspiration from sphagnum can be twice greater compared to evaporation from water surface.
- 4. Maximum rain peak flood coefficients depends on depth of seasonal thawing soil layer and

Special basin characteristics – continuous permafrost

Variations of maximum peak flood rates in Severny (shade slope,1) and Yuzhny (light slope, 2) creeks

The permafrost thickness over Kontaktovy Creek basin area ranges from 120-210 m in the valleys to 300-400 m in the hills. Maximum depth of the seasonal soil thawing is 30-40 cm in the shaded slopes (Yuzhny Creek) and 1.5-2 m in the light slopes (Severny Creek). It influences on the landscape types formation and changes of maximum rain peak floods runoff coefficients during the warm period. changes within 0.86 - 0.98 range for shaded slopes and 0.77- 0.95 for illuminated slopes.

Key references for the basin

- Boyarintsev, E.L., Serbov, N.G., Dovbysh V.N. & Popova N.I. (2006) Experimental studies of evaporation and condensation in mountainous permafrost regions. In: Proc. VI Hydrological Conference, 28 September – 1 October 2004, St.Petersburg, Russia, Section 5, part I, Meteoagentstvo Press, Moscow, p.78-82. (In Russian)
- Zhuravin, S.A. (2004) Features of water balance for small mountainous watersheds in East Siberia: Kolyma Water Balance Station case study. In: Northern Research Basins Water Balance. IAHS publ. № 290, 2004, p 28 – 40.
- 3. Boyarintsev, E.L. (1988) Specific factors of the rain peak flood formation for the Kolyma Water Balance Station area. Proc. DVNIGMI, vol.135, Gidrometeoizdat, Leningrad, p.67-93 (In Russian).

Contact

S.A. Zhuravin, O.M. Semenova

State Hydrological Institute, 23, 2-ya liniya, Vasilievsky Ostrov, 199053, Saint Petersburg, Russia zhuravin@hotmail.ru, omakarieva@gmail.com