

•

Kurbatovka

Nizhnedevitsk Water Balance Station

(NDWBS), Devitsa basin, Russia

Basin characteristics		Instrumentation and data			
River Basin / River Basin	Don River				
Operation (from to)	Since 1948, still in operation	Measured hydrological parameters	Measuring period	Temporal resolution	Number of stations
Gauge coordinates:	51°54' N; 38°23'E/ 208 m a.m.s.l.				
Catchment area:	103 km²	Stream flow	1948 – 1992	Minutes	2 (8)
Elevation range:	135 – 265 m	Precipitation	1948–cont.	daily, minutes	3 (10)
Basin type:	Forest-steppe, hills with gullies and gorges	Snow surveys	1948–cont.	Monthly, decadely, event based	5
Climatic parameters:	560 mm; 6.0°C (1948-1996)	Evapotranspiration	1950–cont.	1 per 5 days	1
Land use:	67% Arable lands, 19% meadow, 14% forest	Snow evaporation	1950–cont.	Daily	1
Soils:	Common medium-thick chernozem	Pan evaporation	1950–cont.	Daily (warm period)	1
Geology:	Sandy-laminated clays and loams, quartz sand, chalk	Soil moisture content	1950–cont.	Monthly	11 (19)
Hydrogeology:	Shallow throughflow horizon (sand), two deep aquifers (quartz sand)	Soil temperature at depths 0.1 – 3.2 m	1974–1981	Daily	1
Characteristic water discharges:	Qmin = 0 m ³ /s, Qmax = 26.3 m ³ /s, Qaverage = 0.40 m ³ /s (1974 – 1984)	Soil freezing/thawing	1958–cont.	1 per 5 days	8
		Energy balance	1950–cont.	Decade	1
Map of the research basin		Ground water tables	1955–1992	1 per 10 days	14
		Flow water chemistry	1950–cont.	Event based	2

Applied models

Daily, event based

6

1950–cont.

1. The model "Hydrograph" (in process)

Suspended sediments

Main scientific results

1. Volume of snow melting peak flood depends from formation of "lock layer" in unsaturated zone

Recording rain gauge Hydrometric site Rain gauge Meteorological station ***** Snow evaporation Snow course surve Soil lysimeter plot Pan evaporation plot Soil sampling site Cryopedometer Groundwater well

Typical hydrographs

Tovarnya

Log Barsky

Scale

0

2 km

- TO SANT

Pershino

Log Medvezhy

Nizhnedevitsk

_ _

---Log Dolgy

(combination of soil moisture content more 0.7 field capacity and soil freezing depth).

- 2. Direct flow (surface flow and throughflow) equals to about 8-10% of total. The rest part of runoff is forming by ground water from main aquifers.
- 3. Annual value of moisture seepage below throughflow horizon is change from 20 mm to 110 mm from year to year.
- 4. Time of moisture seepage from throughflow horizon to main aquifer is about 8-10 years.

Key references for the basin

1. Zhuravin, S.A. (2004) Features of forest-steppe small basins water balance: Nizhnedevitsk Water Balance Station case study. In: Northern Research Basins Water Balance. IAHS publ. № 290, 2004, p 78 – 90.

2. Zhuravin, S.A. (2002) Change of hydrological regimes over the central part of European Russia resulting from climate variations. In: FRIEND 2002, Regional Hydrology: Briging the Gap between Research and Practice (ed. by H.A.J. van Lanen & S.Demuth) (Proc. Fourth FRIEND Conf., Cape Town, October 1993), 441-447. IAHS Publ. No.274.

Basin hydrogeology

3. Vershinina, L.K., Krestovsky, O.I., Kaliuzhny, I.L. & Pavlova, K.K. (1985) Assessment of snow melting water losses and forecasting of spring flood volume. Leningrad, Cidrometeoizdat, 189 p. (In Russian).

Contact

S.A. Zhuravin, O.M. Semenova State Hydrological Institute, 23, 2-ya liniya, Vasilievsky Ostrov, 199053, Saint Petersburg, Russia

zhuravin@hotmail.ru, omakarieva@gmail.com